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Time behaviour of the modifier involved in the general
mechanism of Botts and Morales assuming rapid

equilibrium in the modifier bindings

R. Varón,∗ M. Garcı́a-Moreno, M. Ll. Amo, E. Valero, and F. Garcı́a-Sevilla
Departamento de Quı́mica-Fı́sica, Escuela Universitaria Politécnica, Universidad de Castilla-La
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To date, the classification as activator or inhibitor of a modifier involved in an enzyme
catalysed reaction is established according to its kinetic behaviour at the steady state. Inhib-
itors and activators are defined as modifiers which decrease or increase, respectively, the
steady state rate of an enzyme-catalysed reaction. At this state, in some cases, a modifier
always acts as an activator or as an inhibitor for all its possible concentration values. In
other cases the action of a modifier as activator or inhibitor depends on its concentration.
In this paper we extend the analysis of the kinetic behaviour of a modifier as inhibitor or
nonessential activator to the transient phase of the reaction, i.e. to the whole course of the
reaction, including both the transient phase and the steady state. Moreover, concerning to
the behaviour of a modifier at the transient phase, we suggest its classification as activator
or inhibitor based on the concentration and activator or inhibitor based on the rate. We
have studied the behaviour of the modifier involved in the general modifier mechanisms of
Botts and Morales in which the reversible bindings of the modifier to the enzyme forms are
assumed in rapid equilibrium. The result is that depending on the values of the rate con-
stants, equilibrium constants and the initial concentrations of both the involved substrate
and modifier, the latter can act during the whole reaction course only as an activator, only
as an inhibitor, first as an activator and then, from a determined reaction time, as inhibitor,
or vice versa. Therefore, it is possible that a modifier showing an activating behaviour at
the steady state behaves as an inhibitor in the transient phase, or vice versa. Novel indi-
ces pointing to the conditions under which the modifier can show any of the behaviours
indicated above are suggested. The goodness of the analytical results is tested by com-
parison with the simulated curves obtained by numerical integration. From these results,
those corresponding to several reaction mechanisms involving a modifier, and which can
be regarded as particular cases of the general case analysed here, can be directly and easily
obtained.
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1. Introduction

Reversible modifiers (inhibitors or activators) represent a useful tool for
studying enzyme mechanisms and metabolic routes [1–7]. Moreover, they have
applications in pharmacology, toxicology, industry and agriculture [8–10]. To
date, inhibitors and activators are defined as modifiers that decrease or increase,
respectively, the steady state rate of an enzyme-catalysed reaction [11,12].

As it is known, modifiers are best used according to their kinetic charac-
terisation through an evaluation of their corresponding kinetic parameters. Most
enzyme reaction mechanisms involving a modifier reversibly acting on Michaelis
type enzymes can be considered as particular cases of the general modifier mech-
anism of Botts and Morales depicted in scheme 1, whose steady state and tran-
sient phase kinetics have been widely discussed in the literature [12–24].
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Scheme 1.

More recently, kinetic analyses of the transient phase have been made of
simple enzyme reaction mechanisms in which a competitive [25] or uncompetitive
[26] inhibitor acts reversibly on Michaelis type enzymes, whose substrate is sui-
cide. Nevertheless, these simple mechanisms can be considered as particular cases
of a more general reaction scheme consisting of the general modifier mechanism
of Botts and Morales, with the substrate involved being a suicide substrate [23].

The action of the modifier involved in scheme 1 as activator or inhibitor
has only been discussed, as far as we know, with relation to its effect on the
product rate at the steadystate [11,12,15,27].

Segel [11] and Segel and Martin [15] studied fully the steady-state rate of
the general unireactant modifier mechanism described by scheme 1. This author
yielded a velocity equation of second degree in both [S] and [M] which was later
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reduced to one of first degree in [S] and [M] after some assumptions. These
equations are valid for M being an inhibitor as well as an activator.

Laidler [27] carried out an extensive contribution about the action of M
as activator or inhibitor at the steady state in enzyme catalysed reactions evolv-
ing according to scheme 1. This author determined the conditions under which
there is activation or inhibition at the steady state and that sometimes there is
a transition from activation to inhibition as the substrate concentration is var-
ied. He found a classification of the modification involved in scheme 1 as overall
activation or inhibition, initial activation or inhibition or terminal activation or
inhibition. Laidler also suggested definitions of competitive, uncompetitive and
noncompetitive activation, by analogy with the generally accepted definitions for
inhibition.

More recently, Fontes et al. [12] made a combined analysis of enzyme inhi-
bition and activation of scheme 1 based on rapid equilibrium model assump-
tions, also at the steady state of the reaction. They determined that the modifier
acts as activator, as inhibitor (total or partial) or has no effect on the reaction
rate, depending on the values of the equilibrium constants, the rate constants of
the limiting velocity steps and the concentration of the substrate.

Segel’s, Laidler’s and Fontes et al.’s contributions limit their respective anal-
ysis to the steady state. The main difference between the analyses of these
authors is the set of simplifying assumptions made about the steady state
reached by enzyme systems which fit to scheme 1 or any of its particular cases.

A transient phase analysis similar to those above commented for the steady
state has not been carried out yet. It is in principle interesting to study if when
a modifier, M, will act as activator or inhibitor during the whole course of the
reaction or if, on the contrary, it may happen a transition of activator to inhib-
itor or vice versa at a time of the reaction course. The study of the action of a
modifier during the transient phase of the reaction would give completeness to
the general analysis of the modifier as activator or inhibitor and will extend the
definition of activator or inhibitor.

The aims of the present contribution are (1) to analyse the kinetic behav-
iour as an activator or as an inhibitor of the modifier, M, involved in scheme 1,
at each time of the reaction course, i.e. during both the transient phase and the
steady state; (2) to test the goodness of the analytical solutions by comparison
with the results from the simulated curves obtained by numerical integration and
(3) to suggest the use of indices of the action of the modifier in order to know
if it acts as an activator or as an inhibitor at any time of the reaction course.

2. Materials and methods

Kinetic equations for scheme 2 were obtained using the computer pro-
gram TRAPHAER developed by Varón et al. [22] for obtaining the symbolic
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expressions for both transient phase and steady state equations of enzyme
reactions. The simulated progress curves were obtained by numerical solution
of the non-linear set of differential equations corresponding to scheme 1, using
arbitrary sets of rate constants and initial concentration values. This numerical
solution was found by the Runge–Kutta–Fehlberg algorithm [28,29] using the
computer program WES implemented in Visual C++ 6.0 [30]. The above pro-
gram was run on a PC compatible computer based on a Pentium III/450 MHz
processor with 128 Mbytes of RAM. Figures were carried out using the Sigma-
Plot Scientific Graphing System for Windows version 8.02.

3. Kinetic analysis

3.1. Notation

We indicate here part of the notation used in this paper. The remaining
notation either has been already introduced or will be introduced later in the text
across according it is needed.

[E], [S], [M] and [P ]: Concentrations of E, S, M and P at any reaction time,
t , of the reaction course.

[E]0, [S]0 and [M]0: Concentrations, at t = 0, of E, S and M.
K3 and K4: Equilibrium constants of the reversible bindings of M to E and

ES in scheme 1, i.e.:

Kj = k−j

kj

(j = 3, 4) (1)

To indicate that the mentioned binding steps are at equilibrium we rewrite
scheme 1 as the following scheme 2:
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3.2. Initial and final conditions

We assume that at the onset of the reaction only are present the free
enzyme, E, the substrate, S, and the modifier, M and that [S]0, [M]0 � [E]0. We
also assume that the assayed reaction time is thus that the product concentra-
tion reached at this time is much less than the initial concentration of the sub-
strate, [S]0. The above conditions are easy to be reached experimentally and these
ensure that during the whole course of the assayed reaction time it is observed
that [S] ≈ [S]0 and [M] ≈ [M]0.

3.3. Time course equations

The product accumulation equation corresponding to the transient phase
of scheme 2 can be obtained either manually or easier by using the software
TRAPHAER corresponding to the contribution of Varón et al. [22] concerning
with the derivation of the transient phase and steady state equation of enzyme
reactions. The result is:

[P ] = αt + β
(
e−λt − 1

)
(2)

where t is the time and the parameters α, β and λ are given by:

α =
{{

k1k2K3K4 [S]0 + (k2k5K4 + k1k6K3) [S]0 [M]0 + k5k6 [S]0 [M]20
} /

{
(k−1 + k2) K3K4 + k1K3K4 [S]0 +

{
K3 (k−5 + k6) + K4 (k−1 + k2)

}
[M]0

+ (k5K4 + k1K3) [S]0 [M]0 + (k−5 + k6) [M]20
}}

[E]0 (3)

β =
{{

K3K4 + (K3 + K4) [M]0 + [M]20
} /

{
(k−1 + k2) K3K4 + k1K3K4 [S]0 +

{
K3 (k−5 + k6) + K4 (k−1 + k2)

}
[M]0

+ (k5K4 + k1K3) [S]0 [M]0 + (k−5 + k6) [M]20
}}

α (4)

λ =
{

(k−1 + k2) K3K4 + k1K3K4 [S]0 +
{
K3 (k−5 + k6) + K4 (k−1 + k2)

}
[M]0

+ (k5K4 + k1K3) [S]0 [M]0 + (k−5 + k6) [M]20
} /

{
K3K4 + (K3 + K4) [M]0 + [M]20

}
(5)

Note that the following relationship between these parameters is observed:

β · λ = α (6)
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If [P ], given by equation (2), is derivated with respect to t , and relationship
(6) is taken into account, then we have for the instantaneous rate, v, of product
formation:

v = α
(
1 − e−λt

)
. (7)

In figure 1 the variation of [P ] and v with t , according to equations (2) and
(7) are schematically shown.

3.3.1. Time course equations at the onset of the reaction (i.e. when t → 0)
If we use Maclaurin’s series for exp(−λt) in equations (2) and (7), and we

take into account equation (6), it results that near t = 0 it is observed, if we
neglect (because t → 0) all of the terms of the series except the three first ones,
that:

[P ] ≈ αλ

2
t2 (in presence of the modifier and t → 0) (8)

and

v ≈ αλt (with modifier and t → 0) (9)

Note that equation (9) could also have been derived merely by derivating
equation (8).

3.3.2. Time course equations at the steady state of the reaction (i.e. when
t → ∞)

At high enough reaction time values, t (t → ∞), i.e. at the steady state, the
exponential term in equation (2) can be neglected and the later ones becomes:

[P ] ≈ αt − β (steady state) (10)

Equation (10) corresponds to a straight line with the slope α, origin ordinate −β

and an intercept, τ , with the time axis given by

τ ≈ β

α
(11)

If in equation (10), equation (11) is taken into account, the first one can be
rewritten as

[P ] ≈ α (t − τ) (steady state) (12)

Since at the steady state the time takes high values and therefore much greater
than τ , equation (12) can be approached to:

[P ] ≈ αt (steady state) (13)
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Analogously, at high enough reaction times, t (t → ∞), i.e., at the steady
state, the exponential term in equation (7) can be neglected so that:

v ≈ α (steady state) (14)

Note that equation (14) could also have been derived merely by derivating equa-
tion (13).

4. Action of the modifier as an instantaneous activator or an inhibitor

In order to know the behaviour of the modifier, M, as an activator or an
inhibitor we must compare the kinetics of scheme 2 in the presence and absence
of M. If in the reaction mechanism shown in scheme 2 we suppress the presence
of the modifier, M, the mechanism becomes the well known Michaelis–Menten
one whose kinetic equations corresponding to [P ] and v are the same equations
(2) and (7) but replacing in them α, β, and λ by α0, β0, and λ0, respectively,
obtained from equations (3)–(5) setting in them [M]0 = 0. Next, we summarise
the kinetic equations corresponding to [M]0 = 0:

[P ] = α0t + β0
(
e−λ0t − 1

)
(15)

v = α0
(
1 − e−λ0t

)
(16)

α0 = k1k2 [S]0
k−1 + k2 + k1 [S]0

[E]0 (17)

β0 = 1
k−1 + k2 + k1 [S]0

α0 (18)

λ0 = k−1 + k2 + k1 [S]0 (19)

β0 · λ0 = α0 (20)

[P ] ≈ α0λ0

2
t2 (t → 0) (21)

v0 ≈ α0λ0t (t → 0) (22)

[P ] ≈ α0t (steady state) (23)

v ≈ α0 (steady state) (24)
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Figure 1. Schematic plot of [P ] and v versus t , according to equation (2) and (7).

The dependence of [P ] and v upon t retains the same schematic sharp as
in figure 1.

The instantaneous actions of the modifier can be analysed using criteria of
either product concentration or rate of product formation.

4.1. Instantaneous action of the modifier based on the product concentration

If at a determined reaction time the product concentration is higher or less
than the corresponding one (at the same reaction time) in absence of the modi-
fier, this one will behave, at that reaction time, as activator or inhibitor, respec-
tively, with regard to its concentration. From the uni-exponential character of
equations (2) and (15) the progress curves of P either will intersect in an unique
point corresponding to a reaction time, tc and to a concentration of P, [P ]i ,
or they do not intersect and, therefore, exist the four different possible cases
denoted as cases (a), (b), (c) and (d) and which are summarised in figures 2(a)
and (b).

The conditions in order that the two time progress curves corresponding to
equations (7) and (16) behave according to cases (a)–(b) can be easily obtained.
Let us consider the case in figure 2(a). Obviously, in order to act the modifier as
activator at any reaction time anterior to tc (from t = 0) and as inhibitor at any
time reaction posterior to tc (until t → ∞) it must be fulfilled that at any reac-
tion time anterior and posterior to tc, the corresponding [P ]-value in presence of
the modifier must be higher and less, respectively, than in its absence. To estab-
lish the conditions for this change of the modifier from activator to inhibitor it
is enough to know the behaviour of the progress curves of P in presence and



R. Varón et al. / Time behaviour of the modifier 75

t
0

[P]

0

t
0

[P]

0

t
0

[P]

0

t
0

[P]

0

tc
tc

(a) (b)

(c) (d)

Figure 2. The four possible cases for the relative behaviour with regard to the instantaneous prod-
uct concentration of a same enzyme system evolving according to the mechanism shown in Scheme
2 and that only differs in the presence (——) and the absence (.........) of the modifier M (i.e. the [E]0-
and [S]0-values are the same in each case). (a) The time progress curves of the product intercept in a
determined time, which we will denote as tc, acting the modifier as activator before tc and as inhib-
itor after tc. (b) As in (a), but acting the modifier as inhibitor before tc and as activator after tc. (c)
The progress curves do not intercept and the modifier acts as activator during the whole course of
the reaction. (d) The two progress curves do not intercept and the modifier acts as inhibitor during
the whole course of the reaction.

absence of the modifier near t = 0 (t → 0) and at high reaction times (t → ∞),
i.e.: at the steady state. Effectively, the relative position of the progress curves at
t → 0 remains until the reaction time tc. On the other hand, the relative position
of the progress curves at t → ∞ is the same than from tc.

From equations (8), (13), (21) and (23) we have that the conditions for the
modifier changes, in the reaction course, from concentration-based activator to
concentration based inhibitor are

αλ > α0λ0 (25)

and

α < α0. (26)

From equations (6) and (20), condition (25) can also be written as the equivalent
one:

α2

β
>

α2
0

β0
. (27)
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Table 1
Conditions that must be observed to become the modifier
involved in scheme 2 the kinetic behaviour shown in each of

cases (a)–(b) in figures 2 and 3.

Case Conditions

(a) α2

β
>

α2
0

β0
and α < α0

(b) α2

β
<

α2
0

β0
and α > α0

(c) α2

β
>

α2
0

β0
and α > α0

(d) α2

β
<

α2
0

β0
and α < α0

The conditions are the same for a criterium of modifier based
on the product concentrations as well as on the rate of the
product rate.

Relationships (25) and (26) are the conditions so that the modifier involved
in scheme 2 changes (at t = tc) from concentration-based activator (i.e. activator
with regard to the product concentration) to concentration-based inhibitor (i.e.
inhibitor with regard to the product concentration) in the time reaction course.
Reasoning analogously for cases in figure 2(b), (c) and (d) the conditions sum-
marised in table 1 are obtained.

4.2. Instantaneous action of the modifier based on the product formation rate

If at a determined reaction time the product formation rate, v, is higher
or less than the corresponding one (at the same reaction time) in absence of
the modifier, this one will behave, at that reaction time, as activator or inhibi-
tor, respectively, with regard to the rate. Due to the uni-exponential character of
equations (7) and (16), the progress curves of v either these curves will intersect
in an unique point corresponding to a reaction time, tv and to a rate of P, vi , or
they do not intersect and, therefore, there exist the four different possible cases
we denote as cases (a), (b), (c) and (d) shown in figure 3(a), (b), (c) and (d).

The conditions for the two time progress curves corresponding to equations
(2) and (16) behave according to cases (a)–(b) can be easily obtained. Let us
focus on case in figure 3(a). If the modifier acts as activator at any reaction time
anterior to tv (from t = 0) and as inhibitor at any reaction time posterior to tv
(until t → ∞) it must be fulfilled that at any reaction time anterior and posterior
to tv, the corresponding v-value in presence of the modifier must be higher and
less, respectively, than in its absence. To establish the conditions for this change
of the modifier from rate-based activator to rate-based inhibitor it is enough to
know the behaviour of the time progress curves of v in presence and absence of
the modifier near t = 0 (t → 0) and at high reaction time (t → ∞), i.e., at
the steady state. Effectively, the relative position of the progress curves at t → 0
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Figure 3. The four possible cases for the relative behaviour with regard to the instantaneous prod-
uct rate of a same enzyme system evolving according to the mechanism shown in scheme 2 and that
only differs in the presence (——) and the absence (.........) of the modifier, M (i.e. the [E]0- and [S]0-
values are the same in each case). (a) The time progress curves of the product rate intercept in a
determined time, which we will denote as tv, acting the modifier as activator before tv and as inhib-
itor after tv. (b) As in (a), but acting the modifier as inhibitor before tc and as activator after tc. (c)
The progress curves do not intercept and the modifier acts as activator during the whole course of
the reaction. (d) The two progress curves do not intercept and the modifier acts as inhibitor during
the whole course of the reaction. Figs. (a), (b), (c) and (d) correspond, respectively, to figures 2(a),
(b), (c) and (d).

remains until the reaction time tv. On the other hand, the relative position of the
progress curves at t → ∞ is the same than from tc.

From equations (9), (14), (22) and (24), we see that relationships (26) and
(27) are also the conditions in which the modifier involved in scheme 2 changes
(at t = tv) from rate-based activator (i.e. with regard to the product rate) to rate-
based inhibitor (i.e. with regard to the product rate) in the time reaction course.
Reasoning analogously for the cases in figure 3(b), (c) and (d) conditions sum-
marised in table 1 are obtained.

5. Results and discussion

When the analysis of the action of a modifier is limited to the steady state
of an enzyme-catalysed reaction there is no ambiguity in its characterisation as
activator or inhibitor for a given reaction mechanism and concrete values of the
rate constants, equilibrium constants (if any) and initial concentrations. Never-
theless, if we consider the action of the modifier during the whole reaction time
it is necessary: (i) to define the instantaneous action of the modifier as activator
or inhibitor and (ii) to characterise each of these two actions considering their
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effect on the instantaneous values of the product concentration and the product
rate both in presence and absence of the modifier. This task is that we carried
out in this contribution.

In the same way allowing to obtain the time progress curve v–t from the
time progress curve [P ]–t (from the derivative value at each time) it is possible
to obtain the time progress curve [P ]–t from the time progress curve v–t because
[P ] at any reaction time, t , coincides with the area between the progress curve
v–t , the time axis and the straight line parallel to the v-axis containing the point
(t, 0).

In figure 4, we indicate schematically and simultaneously the behaviour of
the modifier which acts according to figure 2(a) and 3(a). At reaction time tc,
corresponding to [P ]i , the two areas shown in figure 4(b) are equal because their
values must coincide with the [P ]i-value. Note that the tc-value is necessarily
higher than the tv-value because at the reaction time tv the equality between the
two areas has not yet been reached what only will happen at a reaction time pos-
terior to tv concretely at t = tc. This simple consideration allows us to state that
tc > tv.

Briefly, in the example shown in figure 4, in the rank between t = 0 and
t = tv the modifier behaves as a concentration-based activator and a rate-based
activator. Between t = tv and t = tc the modifier acts simultaneously as a concen-
tration-based activator and as a rate-based inhibitor. From t = tc the modifier is
always a concentration-based inhibitor and a rate-based inhibitor. The same hap-
pens for a modifier acting according to figures 2(b) and 3(c) but interchanging
the words activator and inhibitor.

In turn, a modifier which is a concentration-based activator during the whole
time course of the reaction [see figure 2(c)] is also a rate-based activator during
the whole time course of the reaction [see figure 3(c)]. Finally, a modifier which
is a concentration-based inhibitor during the whole time course of the reaction
[see figure 2(c)] is also a rate-based inhibitor during the whole course of the reac-
tion [see figure 3(c)].

5.1. Validity of the results

The analytical results obtained in this contribution are accomplished when-
ever the assumptions used in their derivation are fulfilled. Thus, the initial con-
centration of both the substrate and the inhibitor must be in excess with respect
to that of free enzyme, i.e.:

[S]0 , [M]0 � [E]0 (28)

so that the substrate and inhibitor concentrations can be assumed constant dur-
ing the reaction time assayed. Therefore, since the substrate is tranformed into P,
the reaction time assayed (which we will denoted below by “rt”) should suppose
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Figure 4. (a) (——) Schematic representation of the kinetic behaviour of a modifier which acts
firstly as a concentration-based activator and then as a concentration-based inhibitor. (.........)
Schematic representation of [P ] versus t in absence of the modifier. This (a) corresponds with figure
2(a). (b) (——) Schematic representation of the kinetic behaviour of a modifier which acts firstly as
rate-based activator and then as rate-based inhibitor. (.........) Schematic representation of [P ] versus
t in absence of the modifier. This (b) corresponds with figure 3(a).

a low product accumulation compared with the initial product concentration, i.e.

[P ] (at time = rt) � [P ]0 (29)

The experimental fulfilment of condition (29) is better to reach, the less the ini-
tial concentration of the free enzyme is.
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Moreover, the analytical kinetic equations have been derived assuming that
the bindings of the modifier to the corresponding enzyme forms are in rapid
equilibrium from the onset of the reaction. The necessary and sufficient condi-
tion to these equilibrium approach is [22]

k3 [M]0 , k−3, k4 [M]0 , k−4 � k1 [S]0 , k−1, k2, k5 [S]0 , k−5, k6

k3 [M]0 , k−3, k4 [M]0 , k−4 mutually not very different

}
(30)

Note that in the kinetic equations derived the rate constants k3, k−3, k4 and
k−4, are not involved but the equilibrium constants K3 and K4, defined by equa-
tion (1). But by deriving these equations we have assumed rapid equilibrium
in the bindings of the modifier, M, and, therefore, we have implicitely accepted
condition (30).

Briefly, the more conditions given by equations (28)–(30) are fulfilled, the
more approached will be the theoretical results to the experimental ones.

5.2. Comparison of the kinetic behaviour of the modifier at the steady state and
during the reaction course

The condition to act the modifier M as activator or inhibitor at the steady
state is that the corresponding rate of product formation at this state in presence
of the modifier is higher or less, respectively, than the same rate constant in the
absence of the modifier, i.e.:

M is an activator at the steady state if α > α0 (31)

M is an inhibitor at the steady state if α < α0 (32)

M has no effect if α = α0 (an unlikely situation) (33)

Situation (33) above has been included for completeness but its occurrence can
be neglected.

Since the steady-state rate α (with modifier) depends on [S]0, [M]0 and [E]0
[see equation (3)] and the steady-state rate α0 (with modifier) depends only of
[S]0, and [E]0 [see equation (17)], the kinetic behaviour of M as activator or
inhibitor for a concrete enzyme reaction fitting scheme 2 in concrete experimen-
tal conditions (fixed values of the rate and equilibrium constants) will depend
on the relative values of [S]0 and [M]0 (note that [E]0 is cancelled by using
conditions in table 1). Thus, it may happen that depending on these values, a
same modifier can act as activator or inhibitor. Note that both types of modifier
defined in this paper, i.e. the concentration-based modifier (activator or inhibi-
tor) and the rate-based modifier (activator or inhibitor) coincide at the steady
state.

These considerations made above about the action of the modifier at the
steady state are only a particular case of our more wide analysis covering the
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whole course of the reaction. Specific kinetic analysis of the kinetic behaviour
of a modifier at the steady state have been already carried out extensively
[11,12,15,27]. Both, Segel and Martin [15] and Laidler [27] analysed scheme 1
considering strict steady state, i.e. without assuming rapid equilibrium in the
bindings of M and S to the corresponding enzyme forms whereas Fontes et al.
[12] assumed total rapid equilibrium, i.e. that all of the reversible steps in scheme
1 are in rapid equilibrium. Our analysis, and therefore its particular application
to the steady state, are referred to scheme 1 when the bindings of the modifier
are in rapid equilibrium, i.e. to scheme 2 (partial equilibrium approach).

Before the attainment of the steady state, i.e. at the transient phase of the
reaction, the kinetic behaviour of the modifier for a given mechanism (rate and
equilibrium constants fixed) depends on the four relationships summarised in
table 1. By finding the fulfilment or not of these conditions [E]0 is cancelled
and, therefore, the kinetic behaviour of the modifier as activator or inhibitor
will depend, as at the steady state, on the relative values of [S]0 and [M]0, but
not only. Effectively, for those values of [S]0 and [M]0 yielding cases (a) or (b),
the time, t , is another variable on which depends the behaviour of the modi-
fier, so that, depending on the concrete case, for t < tc the modifier acts as
concentration-based activator [case (a)] or inhibitor [case (b)] and for t > tc
the modifier acts as concentration-based inhibitor [case (a)] or activator [case
(b)]. Analogously, for t < tv the modifier acts as rate-based activator [case (a)]
or inhibitor [case (b)] and for t > tc the modifier acts as rate-based inhibitor
[case (a)] or activator [case (b)]. The time between tv and tc the modifier acts
as concentration-based activator and rate-based inhibitor [case(a)] or vice versa
[case (b)]. In cases (c) and (d) the modifier acts during the whole course of the
reaction as concentration- and rate-based activator [case (c)].

Examples: In table 2 we summarised four different examples (examples 1–4)
characterised by their values of the rate constants, equilibrium constants and ini-
tial concentrations. From these values and equations (3), (4), (17) and (18) the
values of α, β, α0 and β0, respectively, have been obtained. The above values as

Table 2
Examples of different sets of values of the rate constants, equilibrium con-
stants and initial concentrations yielding each of the kinetic behaviours

in cases (a)–(d) indicated in figure 2 and table 1.

Example K3 (M) K4 (M) k5 (M s−1) k−5 (s−1) k6 (s−1) [M]0

1 10−4 10−1 105 102 10−4 10−3

2 10−4 10−2 1 10−4 10−2 10−4

3 10−2 10−2 105 10−1 10−2 10−3

4 10−2 10−2 103 10−3 10−2 10−3

In all of the cases k1 = 104 M s−1, k−1 = 0.01 s−1, k2 = 0.001 s−1[E]0 =
10−8 M and [S]0 = 10−4 M.
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Figure 5. (a) Simulated progress curves corresponding to the product accumulation for the case
(a) indicated in table 4 in the absence (.........) and in the presence of the modifier, M. Note the
action of the modifier first as concentration-based activator and then, from t = tc as concen-
tration-based inhibitor. (b) Simulated progress curves corresponding to the rate product accumu-
lation for the case (a) indicated in table 4 in absence (.........) and in presence of the modifier M
obtained under the same conditions as the curves in (a). Note the action of the modifier first as
rate-based activator and then, from t = tv as rate-based inhibitor. From time tv to tc the modi-
fier M acts simultaneously both as an rate-based inhibitor and as an concentration-based activator.

well as those of α2/β and α2
0/β0 are summarised in table 3. The comparison of

α with α0 and of α2/β with α2
0/β0 allows, according to table 1, to classify the

examples as belonging to cases (a), (b), (c) or (d) in this table. Note that exam-
ples 1,2,3 and 4 in table 2 correspond to cases (a), (b), (c) and (d), respectively,
in tables 1 and 3. The tc and tv-values corresponding to cases (a) and (b) are also
given in table 3.
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Figure 6. (a) Simulated progress curves corresponding to the time course of the product accumu-
lation for the case (b) indicated in table 4 in absence (.........) and in presence of the modifier,
M. Note the action of the modifier first as concentration-based inhibitor and then, from t = tc
as concentration-based activator. (b) Simulated progress curves corresponding to the rate product
accumulation for the case (a) indicated in table 4 in absence (.........) and in presence of the modifier
M obtained under the same conditions as the curves in (a). Note the action of the modifier first as
rate-based inhibitor and then, from t = tv as rate-based activator. From time tv to tc the modifier
M acts simultaneously both as rate-based activator and as concentration-based inhibitor.

5.3. Goodness of our analytical results

In order to test the validity of our above analytical considerations we sim-
ulated both the concentration and the rate formation of the product for the
cases (a), (b), (c) and (d) in table 3. The simulated curves have been obtained by
numerical integration of the non-linear set of differential equations in Appendix
A. The rate constants k3, k−3, k4 and k−4 instead of the equilibrium constants
K3 and K4 used for analytical considerations are necessary for the numerical



84 R. Varón et al. / Time behaviour of the modifier

t (s)
0 5 10 15 20

t (s)
0

0

100

200

300

400

5 10 15 20

v 
(p

M
[P

] (
pM

)
 s

-1
)

0.0

0.8

1.6

(a)

(b)

Figure 7. (a) Simulated progress curves corresponding to the time course of the product accumula-
tion for the case (c) indicated in table 4 in absence (.........) and in presence of the modifier M. (b)
Simulated progress curves corresponding to the rate product accumulation for the case (a) indicated
in table 4 in absence (.........) and in presence of the modifier M obtained under the same conditions
as the curves in (a). Note the action of the modifier as both concentration- and rate-based activator
during the whole course of the reaction.

integration. These rate constants have been arbitrarily chosen, so that k−3/k3

and k−4/k4 coincide with the equilibrium constants K3 and K4 assigned to each
example and that condition (30) fulfils. The values used for k3, k−3, k4 and k−4

in each case are indicated in the caption of table 4 in which we also indicate
the values of α, β, α0, β0, α2/β and α2

0/β0 as well as the tc− and tv− values
[for cases (a) and (b)] obtained from numerical integration. The reaction time,
rt, used was in each of the simulations 20 s. Note the agreement with the ana-
lytical results in table 3.

For better graphic understanding of the kinetic behaviour of the modifier
predicted from results in table 4, in figures 5–8 we have plotted the simulated
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Figure 8. (a) Simulated progress curves corresponding to the time course of the product accumula-
tion for the case (d) indicated in table 4 in absence (.........) and in presence of the modifier M. (b)
Simulated progress curves corresponding to the rate product accumulation for the case (a) indicated
in table 4 in absence (.........) and in presence of the modifier M obtained under the same conditions
as the curves in (a). Note the action of the modifier as both concentration- and rate-based inhibitor
during the whole course of the reaction.

time progress curves corresponding to the product accumulation and product
rate for each of cases (a)–(d) in table 4. Each of the figures 5–7 consists in two
ones (a) and (b). In (a) we have plotted the simulated time progress curves for
the product accumulation with and without presence of the modifier to know
the time kinetic behaviour of the latter as an concentration-based activator or
inhibitor. In (b) we have plotted the simulated time progress curves for the rate
of product accumulation with and without presence of the modifier to know the
time kinetic behaviour of the latter as an rate-based activator or inhibitor. In fig-
ures 5–6 are also observable the values and meaning of the kinetic parameters
defined here tc and tv.
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Table 3
Values of α, β, α2/β, α0, β0, and α2

0/β0 corresponding to examples 1–4 in table 2 obtained from the
kinetic equations.

Example Case in table 1 α (pM s−1) β (pM) α2/β (pM s−2) tc (s) tv (s)

1 (a) 9.016328 0.893343 91.00000 10.16139 2.398937
2 (b) 10.65686 20.85326 5.446087 14.44073 4.997338
3 (c) 17.98257 19.37035 16.69422 – –
4 (d) 9.000988 9.793263 8.272808 – –

The values of α, β, α0, β0 were directly obtained from equations (3), (4), (17) and (18). In all of
the examples it is observed: α0 = 9.891197 pM s−1, β0 = 9.783578 pM, α2

0/β0 = 10 pM s−2. On
the second column the case in table 1 to which belongs the corresponding example is given. On
the two last columns the values of the corresponding tc− and tv− values for cases (a) and (b) are
indicated. These values were obtained from the list of t-values and the corresponding ones for [P ]
and v with and without modifier M arising from equations (2), (7), (8) and (9) inserting in them
the values of the rate constants, equilibrium constants and initial concentrations given in table 2.

Table 4
Values of α, β, α2/β, α0, β0, and α2

0/β0 corresponding to examples 1–4 in table 2 obtained from
numerical integration.

Example Case in table 1 α (pM s−1) β (pM) α2/β (pM s−2) tc (s) tv (s)

1 (a) 8.936549 0.878632 90.89347 9.343217 2.308277
2 (b) 10.65641 20.84481 5.447834 14.56309 5.004173
3 (c) 17.96654 19.33744 16.69283 – –
4 (d) 9.000971 9.793619 8.272476 – –

The values of α and β were directly furnished by the program WES from the numerical integra-
tion of the system of differential equations in Appendix A. The values of α0 and β0 were directly
furnished by the program WES from numerical integration of the system of differential equations
in Appendix A setting in it [M] = 0, i.e. when the reaction mechanism is a Michaelis–Menten one.
The values of k1, k−1, k2, [E]0, [S]0 and [M]0 were, in all the examples, the same as in table 3. The
values of k3, k−3, k4 and k−4 used in each example were: example 1, k3 = 108 M s−1, k−3 = 104 s−1,
k4 = 106 M s−1, k−4 = 105 s−1; example 2, k3 = 106 M s−1, k−3 = 102 s−1, k4 = 105 M s−1, k−4 =
103 s−1; example 3, k3 = 107 M s−1, k−3 = 105 s−1, k4 = 106 M s−1, k−4 = 104 s−1; example 4, k3 =
107 M s−1, k−3 = 105 s−1, k4 = 106 M s−1, k−4 = 104 s−1. In all of the examples 1–4 it is observed:
α0 = 9.891186 pM s−1, β0 = 9.784034 pM and from these values α2

0/β0 = 9.999511 pM s−2. On the
second column the case in table 1 to which belongs the corresponding example is given. The val-
ues of tc and tv for cases (a) and (b) are also indicated. These values were obtained from the list
of t-values and the corresponding ones for [P ] and v with and without modifier M arising from
the numerical integrations. In all cases the reaction time chosen for the simulation was 100 s for
which in the four cases the attainment of the corresponding steady state has been already reached.
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In all the cases (a)–(d) in table 3, the curves arising from the plot of the
kinetic equtions for [P ] and v with and without modifier practically overlap, in
the reaction time assayed, with the corresponding simulated progress curves in
figures 5 and 6.

Note that the predictions based on the analytical results are completely con-
firmed by the numerical integration under the same assumptions under which
those ones are valid.

APPENDIX A: System of differential equations describing the evolution of the
species involved in schemes 1 and 2

d [E]
dt

= −k1 [E] [S] − k3 [E] [M] + k−3 [EM] + (k−1 + k2) [ES] (A.1)

d [ES]
dt

= k1 [E] [S] − (k−1 + k2) [ES] − k4 [ES] [M] + k−4 [EMS] (A.2)

d [EM]
dt

= −k5 [EM] [S] − k−3 [EM]+k3 [E] [M]+(k−5+k6) [EMS] (A.3)

d [EMS]
dt

= k5 [EM] [S] + k4 [ES] [M] − (k−4 + k−5 + k6) [EMS] (A.4)

d [S]
dt

= −k1 [E] [S] − k5 [EM] [S] + k−1 [ES] + k−5 [EMS] (A.5)

d [M]
dt

= −k3 [E] [M] − k4 [ES] [M] + k−3 [EM] + k−4 [EMS] (A.6)

d [P ]
dt

= k2 [ES] + k6 [EMS] (A.7)
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